On the Size-Ramsey Number of Hypergraphs
نویسندگان
چکیده
The size-Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analogous to the graph case, we consider the size-Ramsey number of cliques, paths, trees, and bounded degree hypergraphs. Our results suggest that size-Ramsey numbers for hypergraphs are extremely difficult to determine, and many open problems remain.
منابع مشابه
Zarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملEMBEDDINGS AND RAMSEY NUMBERS OF SPARSE k-UNIFORM HYPERGRAPHS
Chvátal, Rödl, Szemerédi and Trotter [3] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In [6, 23] the same result was proved for 3-uniform hypergraphs. Here we extend this result to k-uniform hypergraphs for any integer k ≥ 3. As in the 3-uniform case, the main new tool which we prove and use is an embedding lemma for k-uniform hypergraphs of boun...
متن کاملMinimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs
A uniform hypergraph H is called k-Ramsey for a hypergraph F , if no matter how one colors the edges of H with k colors, there is always a monochromatic copy of F . We say that H is minimal k-Ramsey for F , if H is k-Ramsey for F but every proper subhypergraph of H is not. Burr, Erdős and Lovasz [S. A. Burr, P. Erdős, and L. Lovász, On graphs of Ramsey type, Ars Combinatoria 1 (1976), no. 1, 16...
متن کاملGeneralized Ramsey theorems for r-uniform hypergraphs
We show that several known Ramsey number inequalities can be extended to the setting of r-uniform hypergraphs. In particular, we extend Burr’s results on tree-star Ramsey numbers, providing exact evaluations for certain hypergraph Ramsey numbers. Then we turn our attention to proving a general multicolor hypergraph Ramsey number inequality from which generalizations of results due to Chvátal an...
متن کاملSharp thresholds for hypergraph regressive Ramsey numbers
The f -regressive Ramsey number R f (d, n) is the minimum N such that every colouring of the d-tuples of an N -element set mapping each x1, . . . , xd to a colour ≤ f(x1) contains a min-homogeneous set of size n, where a set is called min-homogeneous if every two d-tuples from this set that have the same smallest element get the same colour. If f is the identity, then we are dealing with the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 86 شماره
صفحات -
تاریخ انتشار 2017